A comparison of missing data procedures for addressing selection bias in HIV sentinel surveillance data
نویسندگان
چکیده
BACKGROUND Selection bias is common in clinic-based HIV surveillance. Clinics located in HIV hotspots are often the first to be chosen and monitored, while clinics in less prevalent areas are added to the surveillance system later on. Consequently, the estimated HIV prevalence based on clinic data is substantially distorted, with markedly higher HIV prevalence in the earlier periods and trends that reveal much more dramatic declines than actually occur. METHODS Using simulations, we compare and contrast the performance of the various approaches and models for handling selection bias in clinic-based HIV surveillance. In particular, we compare the application of complete-case analysis and multiple imputation (MI). Several models are considered for each of the approaches. We demonstrate the application of the methods through sentinel surveillance data collected between 2002 and 2008 from India. RESULTS Simulations suggested that selection bias, if not handled properly, can lead to biased estimates of HIV prevalence trends and inaccurate evaluation of program impact. Complete-case analysis and MI differed considerably in their ability to handle selection bias. In scenarios where HIV prevalence remained constant over time (i.e. β = 0), the estimated β^1 derived from MI tended to be biased downward. Depending on the imputation model used, the estimated bias ranged from -1.883 to -0.048 in logit prevalence. Furthermore, as the level of selection bias intensified, the extent of bias also increased. In contrast, the estimates yielded by complete-case analysis were relatively unbiased and stable across the various scenarios. The estimated bias ranged from -0.002 to 0.002 in logit prevalence. CONCLUSIONS Given that selection bias is common in clinic-based HIV surveillance, when analyzing data from such sources appropriate adjustment methods need to be applied. The results in this paper suggest that indiscriminant application of imputation models can lead to biased results.
منابع مشابه
Selection of Variables that Influence Drug Injection in Prison: Comparison of Methods with Multiple Imputed Data Sets
Background: Prisoners, compared to the general population, are at greater risk of infection. Drug injection is the main route of HIV transmission, in particular in Iran. What would be of interest is to determine variables that govern drug injection among prisoners. However, one of the issues that challenge model building is incomplete national data sets. In this paper, we addressed the process ...
متن کاملInfluence of Pattern of Missing Data on Performance of Imputation Methods: An Example from National Data on Drug Injection in Prisons
Background Policy makers need models to be able to detect groups at high risk of HIV infection. Incomplete records and dirty data are frequently seen in national data sets. Presence of missing data challenges the practice of model development. Several studies suggested that performance of imputation methods is acceptable when missing rate is moderate. One of the issues which was of less concern...
متن کاملAdjusting HIV prevalence estimates for non-participation: an application to demographic surveillance
INTRODUCTION HIV testing is a cornerstone of efforts to combat the HIV epidemic, and testing conducted as part of surveillance provides invaluable data on the spread of infection and the effectiveness of campaigns to reduce the transmission of HIV. However, participation in HIV testing can be low, and if respondents systematically select not to be tested because they know or suspect they are HI...
متن کاملNosocomial Infection Surveillance System in Iran: Structures, Processes and Achievements
Background and Objectives: This article provides an overview of the national nosocomial infection surveillance system in Iran and its current status, achievements, and challenges. Methods: All relevant reports, documents, and program guidelines, as well as published literature and surveillance data related to the nosocomial infection surveillance system in Iran were critically reviewed. Opi...
متن کاملEvaluation of Kenya’s readiness to transition from sentinel surveillance to routine HIV testing for antenatal clinic-based HIV surveillance
BACKGROUND Sentinel surveillance for HIV among women attending antenatal clinics using unlinked anonymous testing is a cornerstone of HIV surveillance in sub-Saharan Africa. Increased use of routine antenatal HIV testing allows consideration of using these programmatic data rather than sentinel surveillance data for HIV surveillance. METHODS To gauge Kenya's readiness to discontinue sentinel ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2013